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1 Exploring the dataset

1.1 Initial Exploration

As the Kaggle competition notes [1],

“The training dataset includes 1127 chest x-rays drawn from several different

sources (of varying size and quality) and a set of multiclass labels indicating

whether each patient was healthy or diagnosed with bacterial pneumonia, viral

pneumonia, or COVID-19. The test data includes 484 images without labels, for

which you will predict a diagnosis.”

I began by examining a few of the images from both the training and test datasets:

Figure 1: Sample training images (with labels).

The first 24 images from the training dataset, with their accompanying labels.

The x-rays from the test dataset look much the same. The biggest takeaway I got was

that I would need to standardize the image size for each x-ray at some point during pre-
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processing. From here, I looked at the class breakdown of the training data, finding that

x-rays of patients with COVID-19 made up a little less than 7% of the training dataset (77

of the 1127 training x-rays):

COVID-19

6.80%

Viral

31.05%

Bacterial

31.05%

Normal

31.05%

Figure 2: Class breakdown of the training data.

The viral, bacterial, and normal (healthy) classes of x-rays each had 350 images in the

training data, while the covid class only offered 77 images for training.

As we saw in Fig. 1, the image size varied quite a bit within training dataset. The same is

true of the test dataset. In anticipation of standardizing the image size during pre-processing,

I decided I would also look at the distribution of image sizes in each dataset, given in Fig.

3:
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(a) Training dataset

(b) Testing dataset

Figure 3: Distribution of image sizes.
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2 Pre-processing

2.1 Initial pre-processing

Looking at Fig. 3, I determined that resizing all of the images in the training and test data

to 512×512 made sense. The images shown in Fig. 1 have been displayed again in Fig.

4 after resizing to 512×512. I also normalized all of the pixel values to be floating points

between 0 and 1, rather than integers between 0 and 255. This was done to make the maths

for the neural network a little more straight forward.

Figure 4: Resized training images (with labels).

The first 24 images from the training dataset, resized to 512×512 pixels, with the pixel values

normalized to be floats between 0 and 1.
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3 Algorithms

To start the project, I first looked through Google Scholar for some papers on related prob-

lems, and stumbled upon Rajpurkar et. al.’s paper, “CheXNet: Radiologist-Level Pneu-

monia Detection on Chest X-Rays with Deep Learning” [3]. They used a 121-layer Dense

Convolutional Neural Network, trained on the ChestX-ray 14 dataset. The ChestX-ray 14

dataset contains 112,120 frontal-view x-ray images of 30,805 unique patients. They also

utilized transfer learning, initializing the weights of their network with the weights from a

model pretrained on the ImageNet database. Another paper implemented transfer learning

with the ImageNet database as well: Kermany et. al.’s “Identifying Medical Diagnoses and

Treatable Diseases by Image-Based Deep Learning” [2]. Below is the graphical abstract from

their paper:

Figure 5: The graphical abstract from Kermany et. al.’s “Identifying Medical Diagnoses

and Treatable Diseases by Image-Based Deep Learning” [2].
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3.1 CNN v.1.0

Inspired by the CheXNet paper and Kermany et. al.’s paper, I began by writing a fairly

vanilla convolutional neural network (CNN) in Python using the TensorFlow package, with

the idea of eventually upgrading the base model I wrote via transfer learning, as done in

both papers. The first model I wrote had the following architecture and parameters:

Layer Neurons Activation function

Convolutional Layer 1: 32 convolutions, (3, 3) ReLU

Max Pooling Layer 1: (2, 2)

Convolutional Layer 2: 64 convolutions, (3, 3) ReLU

Max Pooling Layer 2: (2, 2)

Flatten

Dense Layer 1: 128 ReLU

Dense Layer 2: 4 Softmax

Table 1: CNN v.1.0 architecture

General Parameters

Image size: (512, 512)

Batch size: 32

Optimizer: Adam

Loss function: Categorical cross entropy (sparse)

Table 2: CNN v.1.0 parameters

These will serve as the parameters for all of the models going forward, unless otherwise

noted.

The model as a whole has 130,075,652 total parameters (weights), all of which are trainable

(i.e. must be learned). Training time took about 22 minutes and 30 seconds (for 5 epochs).

The training loss and accuracy for each epoch are reported below in Table 3, along with the

score on the Kaggle competition’s public leaderboard:
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Epoch Loss Accuracy

1 5.6336 0.3487

2 1.0010 0.5563

3 0.7642 0.6575

4 0.6404 0.7116

5 0.5475 0.7587

Test (submission) n/a score = 0.56209

Table 3: CNN v.1.0 training loss, accuracy, and Kaggle public leaderboard score.

Training and testing this model yielded the following notes: Firstly, the time to train took

too long considering this is simply a bare-bones model. This is largely due to the fact that

the x-ray images were of a fairly large size (512×512), driving up the number of parameters

that needed to be trained. Secondly, while I had a hunch that the model could be overfitting,

there was no real way to be sure without plotting the loss of both the training and test sets.

Without any given labels for the test set, I decided that a validation set should be made out

of a fraction of the training set for the next model. Next, I examined the class breakdown

of the model’s predictions on the test data, given in Fig. 6 below:

Predicted test labels

2.27%

43.80%

22.31%

31.61%

Training labels

6.80%

31.05%

31.05%

31.05%

COVID-19
Viral
Bacterial
Normal

Figure 6: Left: CNN v.1.0 breakdown of predicted labels on the test dataset. Right: Fig.

2’s breakdown of labels in the training dataset.

Of the 484 test x-ray images, the CNN v.1.0 model only predicted COVID-19 eleven times,

while it predicted viral pneumonia 212 times, bacterial pneumonia 108 times, and healthy

153 times. This deviates significantly from the distribution we see present in the training

dataset.
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Finally, this model varied significantly in its predictions each time it was trained anew. On

a completely different training run, separate from the results described above in Table 3 and

Fig. 6, the model managed to end epoch 5 with about 83% training accuracy, and scored

0.6666 on the Kaggle public leaderboard. Interestingly, the predictions that resulted in that

Kaggle score (the high for this model) saw a huge increase in the COVID-19 class share

(where 11% of images were predicted as COVID-19). This increase helps account for the

higher Kaggle score, since the metric used on Kaggle gives heavy preference for classifying

COVID-19 x-rays correctly over the other classes. But, similarly to the run described in

above in Table 3 and Fig. 6, these predictions struggled to reflect the training data’s class

breakdown; for example, bacterial pneumonia was only predicted 15% of the time, when it

comprises nearly a third of the training data. Therefore, work needs to be done to improve the

model’s consistency, as well as its reflection of the training data (assuming the distribution

of training data reflects that of the test data).

3.2 CNN v.1.1

Taking into account all of the findings from CNN v.1.0 gave rise to the following changes:

1. To help with training time, I resized all images to 64×64 pixels, rather than the original

512×512. Once things are working better, the image size can be brought back up to

512×512 to try and get more information out of each x-ray.

2. The training data was divided into two datasets: (1) A slightly smaller training set,

composed of the first 80% of the x-ray images in the original training data, giving 901

images total. (2) A validation set, consisting of the last 20% of the x-ray images in

the original training data, giving 226 images. These two datasets were then used to

monitor potential overfitting.

3. I imposed a kind of class weighting, in which the loss function is weighted differently

during training depending on what class of image the neural network is training on at

a given time. Essentially, this is to tell my model to “pay more attention” to samples

from the under-represented COVID-19 class. The class weighting is as follows: covid:

5, viral: 1, bacterial: 1, normal: 1 (i.e. covid training samples are weighted 5 times

more than samples from other classes in the loss function calculations during training).

4. I also shuffled the training data before every epoch to try and help the consistency /

reproducibility of the model.

Having made all of these changes, the model as a whole has 1,625,092 total parameters
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(weights), all of which are trainable (i.e. must be learned). Training time took 2 minutes

and 43 seconds for 50 epochs, a drastic improvement from the prior model; CNN v.1.1 was a

little less than ten times faster to run ten times as many epochs, i.e. CNN v.1.1 was slightly

less than 100 times faster than CNN v.1.0 per epoch. The training loss and accuracy along

with the validation loss and accuracy for each epoch are reported below, along with the score

on the Kaggle competition’s public leaderboard at different checkpoints along the model’s

50 epochs:

Figure 7: CNN v.1.1 loss and accuracy on both the training and validation sets.

(Note: x-axis is off by 1, i.e. it should read from epoch 1 to 51.)

Epoch Train Acc Val Acc Train Loss Val Loss Kaggle Score

5 0.6792 0.6593 0.8164 0.9495 0.67973

25 0.9623 0.6549 0.1188 1.7816 0.69607

50 1.0000 0.6504 0.0083 3.3268 0.65359

Table 4: CNN v.1.1 scores on the Kaggle public leaderboard after various epochs.

Interestingly, overfitting is occurring, but not as soon as I’d expect. Looking at Fig. 7, and
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I would expect the model to start overfitting to the training data at around epoch 5 or 6.

However, the validation accuracy stays fairly constant instead of dropping, while the Kaggle

score actually increases for quite a while past epoch 5 before decreasing again. I assume this

is due to the small sizes of our training, validation, and testing datasets. I next decided to

plot a confusion matrix just to see where our model so far does well and where it struggles:

Figure 8: Confusion matrix for CNN v.1.1 after 5 epochs of training.

We can see that the model has little difficulty in confidently identifying covid x-rays: it

correctly classified 16 of the 17 covid x-rays in the validation set, mistaking one as a normal

(healthy) x-ray. The same can be said of the model’s ability to predict healthy x-rays, with

66 correctly identified out of the 72 present. The confusion lies in the model’s approach

to bacterial x-rays: only one third of the bacterial x-ray images were correctly identified,

with virtually the entire the other two thirds being mistaken for viral x-rays. However, viral

x-rays seemed to be relatively distinct, with 43 correctly identified out of 65, and only 11

mistaken for bacterial x-rays. To get a better understanding for how the neural network is

making its predictions, i.e. what features (pixels) it is using to base its decisions, I decided

to plot sample x-ray images from the validation set as they go through the convolutions of

the network (again after the model has trained for 5 epochs):
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Figure 9: Seven COVID-19 x-rays from the validation set shown going through each con-

volutional layer of the neural network (after training for 5 epochs).

As we can see, the first six x-rays were all correctly identified as covid x-rays; in each one,

the predominant shape the neural network has extracted from the final max pooling layer

is a triangular mass located towards the bottom of the lungs. Sometimes this triangle has

arms flanking it, which appear to correspond to the outline of the ribcage. In the seventh

x-ray, the model misclassified the image as being healthy, probably because this x-ray is a

side-view, rather than the more common frontal view that dominates the training dataset.
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Figure 10: Seven VIRAL x-rays from the validation set shown going through each convo-

lutional layer of the neural network (after training for 5 epochs).

Here, the first four x-rays are correctly identified as viral pneumonia; in each one, the

predominant shape the neural network has extracted from the final max pooling layer is a

large, “squiggly” mass that extends from the top of the frame to the bottom, leaving very

little negative space. The last three x-rays have all been misidentified by the model, with

each one’s final max pooling layer displaying structures corresponding quite closely to their

predicted categories (Figs. 9-12).
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Figure 11: Seven BACTERIAL x-rays from the validation set shown going through each

convolutional layer of the neural network (after training for 5 epochs).

The first four x-rays shown above have been correctly identified as bacterial pneumonia;

similar to the viral x-rays, the predominant structure extracted by the model in these cases

is very large, with little negative space. The only distinction my naked eye can find between

the viral x-rays presented in Fig 10 and the ones here, is that the viral x-rays are more

“squiggly” than these “lumpier” bacterial x-rays. The last three x-rays were incorrectly

classified: two as viral and one as healthy (normal).
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Figure 12: Seven HEALTHY (normal) x-rays from the validation set shown going through

each convolutional layer of the neural network (after training for 5 epochs).

Top four x-rays have been correctly identified as healthy (normal); each one’s final max

pooling layer displays a structure with lots of negative space relative to the other three

classes (Figs. 9-11). The last three x-rays have been misclassified: the one predicted to be

covid shows the familiar triangular shape with arms flanking it, the one misidentified as viral

shows the “squiggly” mass found in the viral images, while the one predicted as bacterial

does not have much negative space, just like the other bacterial images.
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Figs. 9-12 show examples of correctly and incorrectly identified covid, viral, bacterial, and

normal x-rays going through the neural network (respectively). Each figure displays seven

x-rays, with each x-ray getting its own row. In every figure, the first four x-rays are correctly

identified, while the last three are misclassified (except for Fig. 9, which has the first six

images correctly identified, and the final image misclassified). While each row displays a

single x-ray, each column displays that x-ray after having gone through a different convolu-

tional layer of the neural network. The final convolutional layer, i.e. the second max pooling

layer (fifth column), displays essentially what features the neural network is utilizing when

making a prediction and distinguishing between different classes. This has given rise to four

different structures that could potentially characterize each class of x-ray, as well as provide

clinicians with useful indicators when attempting to diagnose and combat COVID-19 using

only x-ray images:

1. COVID-19 can be characterized by a triangular structure that sits

low, towards the bottom of the lungs, while arms are sometimes

seen flanking this structure that correspond to the outline of the

ribcage.

2. VIRAL pneumonia can be characterized by a large, “squiggly”

mass that extends from the top of the ribcage to the bottom,

leaving very little negative space.

3. BACTERIAL pneumonia can be characterized by a large mass,

“lumpy” in shape, that leaves little negative space. Somewhat

triangular in shape, but distinct from COVID-19 in that it extends

from the top of the chest to the bottom, rather than sitting low.

4. NORMAL (healthy) x-rays can be characterized by loads of neg-

ative space, with the only definitive features being the spine and

ribcage outline.
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3.3 Transfer Learning v.2.0

At this point I decided to introduce transfer learning. For the first model to implement

transfer learning, I chose my base model as a pretrained neural network from TensorFlow,

an ImageNet classifier. The one I chose can be found at:

https://tfhub.dev/google/tf2-preview/mobilenet_v2/feature_vector/4

The base model takes images of size 224×224×3 pixels (all 3 RBG channels are present),

and outputs 1280 neurons by default. So, I resized all of the images to be the appropriate

224×224×3. I then connected this output to a dense layer of my own, with only 4 neurons

(the classification head of the network). This results in 2,263,108 total parameters, with only

5,124 of them being trainable (the base model is frozen, so the only trainable weights are

the connections between the 1280 output neurons from the base connected to the 4 neurons

of my own dense layer that acts as a classification head, along with the 4 neurons from the

dense layer, i.e. 1280*4 + 4 = 5124). I then trained the model for 40 epochs (with the

same 80/20 train/val split from CNN v.1.1), which took about 18 minutes and 30 seconds.

I imposed the same class weighting introduced in CNN v1.1, as well as the same shuffling of

the data. The loss and accuracy over the 40 epochs can be seen below, along with the score

on the Kaggle competition’s public leaderboard at two different checkpoints:

Figure 13: Transfer Learning v.2.0 loss and accuracy on both the training and val. sets.

(Note: x-axis is off by 1, i.e. it should read from epoch 1 to 41.)
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Epoch Train Acc Val Acc Train Loss Val Loss Kaggle Score

4 0.7725 0.7434 0.5769 0.7124 0.81372

20 0.8946 0.7699 0.2989 0.6443 0.81699

40 0.9312 0.7743 0.2060 0.6915 n/a

12† n/a n/a n/a n/a 0.83006

Table 5: Transfer Learning v.2.0 scores on the Kaggle public leaderboard after various

epochs.

† Note: This Kaggle score is the high for this model, and came via two small changes: firstly,

the learning rate was reduced by a factor of 0.1 every time the validation loss was seen to

plateau / not improve for 2 epochs. Secondly, the best model was saved over the course of

20 epochs (that being the model after the 12th epoch).

Finally, a confusion matrix of the validation dataset is plotted below (after 20 epochs):

Figure 14: Confusion matrix for Transfer Learning v.2.0 after 20 epochs of training.

The main problem this model has is its lack of interpretability: since the architecture is not

that of a convolutional neural network, we cannot perform the same analysis we did for the

CNN v1.1 model. Therefore, one final model will be examined.
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3.4 Transfer Learning CNN v.3.0

This model again utilizes transfer learning, with the base model this time being a pretrained

convolutional neural network from TensorFlow, trained on the ImageNet dataset again. The

chosen model is the VGG16 model: a CNN with 19 layers total that takes images of the

shape 224×224×3 (all three RBG channels present). I flattened the final convolutional

layer’s output from the VGG16 model, and fed it to a dense layer of 4 neurons, acting as

the classification head of the model. All but the very last three layers of the VGG16 model

were frozen, leaving the model as a whole with 2,460,164 trainable parameters out of the

14,815,044 total. It took approximately 46 minutes to train the model for 9 epochs. Other

than these changes, the parameters and specifics of the model follow those of the others I’ve

discussed throughout section 3. Below I have shown the loss and accuracy over 9 epochs

of training, along with the score on the Kaggle competition’s public leaderboard at a few

different checkpoints (note: the Fig. 15 only shows the loss/accuracy for the first 9 epochs,

while the Table 6 displays scores the model received after having gone through some extra

training):

Figure 15: Transfer Learning CNN v.3.0 loss and accuracy on both the training and val.

sets.

(Note: x-axis is off by 1, i.e. it should read from epoch 1 to 10.)
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Epoch Train Acc Val Acc Train Loss Val Loss Kaggle Score

9 0.9856 0.7920 0.0645 0.6799 0.83986

11 0.9900 0.8097 0.0445 0.7432 0.83006

13 0.9900 0.8186 0.0422 0.7579 0.83986

Table 6: Transfer Learning CNN v.3.0 scores on the Kaggle public leaderboard after various

epochs.

Below is a confusion matrix of the validation dataset (after 9 epochs):

Figure 16: Confusion matrix for Transfer Learning CNN v.3.0 after 9 epochs of training.

This, as we can see from Fig. 15 and Table 6, is our best model yet. The confusion

matrix supports this. The model confidently identifies covid x-rays and normal x-rays, and

has gotten much better at classifying bacterial pneumonia (slightly at the expense of viral

pneumonia, where the model struggles to tell it apart from bacterial). Finally, we can

examine some specific sample x-ray images going through the model layer by layer, to try

and interpret / understand what governs the model’s predictions, i.e. find out which features

the model is relying on (again, I am examining the model after 9 epochs):
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Figure 17: A single covid x-ray correctly predicted by the model shown going through each

convolution of the neural network.

Figure 18: Another covid x-ray correctly predicted by the model shown going through each

convolution of the neural network.
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Figure 19: A single viral x-ray correctly predicted by the model shown going through each

convolution of the neural network.

Figure 20: Another viral x-ray correctly predicted by the model shown going through each

convolution of the neural network.
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Figure 21: A viral x-ray misidentified by the model as a covid x-ray shown going through

each convolution of the neural network.

Figure 22: A viral x-ray misidentified by the model as bacterial pneumonia shown going

through each convolution of the neural network.
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Figure 23: A viral x-ray misidentified by the model as healthy (normal) shown going

through each convolution of the neural network.

Figure 24: A single bacterial x-ray correctly classified by the model shown going through

each convolution of the neural network.
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Figure 25: Another bacterial x-ray correctly classified by the model shown going through

each convolution of the neural network.

Figure 26: A bacterial x-ray misidentified by the model as viral shown going through each

convolution of the neural network.
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Figure 27: A bacterial x-ray misidentified by the model as healthy (normal) shown going

through each convolution of the neural network.

Figure 28: A single healthy (normal) x-ray correctly identified by the model shown going

through each convolution of the neural network.
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Figure 29: Another healthy (normal) x-ray correctly identified by the model shown going

through each convolution of the neural network.
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