COLUMBIA
 MAILMAN SCHOOL of PUBLIC HEALTH

Principal Component Pursuit for Pattern Recognition from Incomplete Environmental Data

ENAR 2022 Spring Meeting
March 28, 2022

Outline

1. Background \& motivation: mixtures, pattern recognition
2. Principal Component Pursuit (PCP) introduction
3. Block Missingness problem formulation
4. Extensions addressing block missingness
5. Results from simulated \& applied analyses
6. Conclusion

Why study mixtures?

- Traditionally, health studies have focused on single-chemical analyses
- E.g. lead exposure \& brain development
- This is unrealistic
- In reality, we are exposed to hundreds (thousands?) of chemicals
- The combination of exposures likely induces different responses

Why exposure pattern recognition?

We'd like to identify:

- Sources of exposure
- Behaviors leading to exposure

Linking patterns associated with adverse health outcomes could yield:

- Efficient policy \& public health regulations
- Targeted interventions

Existing pattern recognition techniques:

Limitations include:

- Choice of k patterns subjective
- Outliers may affect solution
- No standard for handling structured (block) missingness
Proposed solution:
- Principal Component Pursuit

Mixtures modeling

Noise (Z_{0})

Principal Component Pursuit (PCP)

- Convex optimization algorithm from computer vision
- Performs dimension reduction by decomposing data matrix into:

1. Low-rank (L) \rightarrow consistent patterns
2. Sparse $(S) \rightarrow$ unique or outlying events
$\sqrt{P C P}:=\min _{\boldsymbol{L}, S}\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1}+\mu\|\boldsymbol{L}+\boldsymbol{S}-\boldsymbol{D}\|_{F}$
(Zhang et al., 2021)

Benefits of PCP

- Robust to noisy data
- Researcher does not need to choose k
- Extreme events not discarded \& do not influence patterns
- Improved predictive accuracy over PCA

Adapting PCP for use in environmental health

EPA AQS PM 2.5 data: NYC, 2001-2020

The block missingness problem

The problem: can we recover L_{o} from \widetilde{D} ?

How does PCP handle block missingness?

A key operation in PCP is taking a projected gradient step on the rank- r matrix L. Formally,

$$
\boldsymbol{L}_{k+1}=\mathcal{P}_{r}\left[\boldsymbol{L}_{k}-t \mathcal{P}_{\Omega}\left(\boldsymbol{L}_{k}+\boldsymbol{S}_{k}-\boldsymbol{D}\right)\right]
$$

where \mathcal{P}_{r} finds the closest rank- r approximation to a given input matrix.
\rightarrow This is just a truncated SVD / PCA
\mathcal{P}_{r} struggles with block missingness...

PCP
...so PCP will struggle with it as well

Structure-aware Nystrom extension to \mathcal{P}_{r}

$\mathcal{P}_{\text {nystrom }}(\boldsymbol{W})$:

$$
\begin{aligned}
& \mathcal{P}_{r}(\widehat{W})
\end{aligned}
$$

Main idea: $\boldsymbol{W}_{11}=\boldsymbol{W}_{12}\left[\mathcal{P}_{r}\left(\boldsymbol{W}_{22}\right)\right]^{\dagger} \boldsymbol{W}_{21}$

Key takeaways from $\mathcal{P}_{\text {nystrom }}$

- We are reconstructing the missing block from observed data
- This formulation is exact in no-noise conditions
- As noise levels increase it becomes harder to recover missing block
- Main assumption: The missing block is characterized by the same patterns governing the observed blocks

Simulation results

Target L_{0}

$r=1, t=1$, loss $=0.415$

$r=1, t=1$, loss $=0.128$

Simulation results

Method

Noise

EPA AQS PM 2.5 data: NYC, 2001-2020

NYC Data

Results - EPA AQS PM 2.5 data: NYC, 2001-2020

$$
\begin{array}{ll}
= & \tilde{D} \\
= & \mathcal{P}_{r}(\tilde{D}) \\
= & \mathcal{P}_{\text {nystrom }}(\tilde{D})
\end{array}
$$

Conclusion

- The Nystrom extension improves recovery of missing block
- This formulation is exact in no-noise conditions
- As noise levels increase it becomes harder to recover the missing block
- Main assumption: The missing block is characterized by the same patterns governing the observed blocks
- PCP equipped $w /$ Nystrom extension serves as a useful pattern recognition tool

Future Work ${ }^{\text {O }}$ github.com/Columbia-PRIME/pcpr

- Tackle overlapping block missingness
- Explore extensions for high-noise situations
- Investigate uncertainty characterization

Acknowledgements

Columbia University PRIME Team:

Marianthi-Anna
Kioumourtzoglou Environmental Health

Jaime Benavides Environmental Health

John Wright Electrical Engineering

Robert Colgan
Computer Science

Jeff Goldsmith Biostatistics

Jingkai Yan Electrical Engineering

Elizabeth Gibson Environmental Health

Rachel Tao Epidemiology

Yanelli Núñez
Environmental Health

Junhui Zhang Applied Physics \& Applied Mathematics

makLab

Arin Balalian, Tanya Butt, Ilan Cerna-Turoff, Gali Cohen, Vivian Do, Maggie Li, Robbie Parks,

Sebastian Rowland, Roheeni Saxena, Jenni Shearston, Sabah Usmani

Supported by: ~ R01 ES028805岂 P30 ES009089
F31 ES030263
Contact:
《 lgc2139@cumc.columbia.edu lawrence-chillrud.github.io

Mathematical intuition behind why $W_{11}=W_{12}\left[\mathbb{P}_{2}^{\dagger}\left(W_{22}\right)\right]^{\dagger} W_{21}$

Simple scenario:

$$
\begin{aligned}
& \boldsymbol{W}=\left[\begin{array}{ll}
\boldsymbol{W}_{11} & \boldsymbol{W}_{12} \\
\boldsymbol{W}_{21} & \boldsymbol{W}_{22}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{U}_{1} \\
\boldsymbol{U}_{2}
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{V}_{1} & \boldsymbol{V}_{2}
\end{array}\right]=\left[\begin{array}{lll}
\boldsymbol{U}_{1} \boldsymbol{V}_{1} & \boldsymbol{U}_{1} \boldsymbol{V}_{2} \\
\boldsymbol{U}_{2} \boldsymbol{V}_{1} & \boldsymbol{U}_{2} \boldsymbol{V}_{2}
\end{array}\right] \quad \operatorname{rank}(\boldsymbol{W})=r \\
& \boldsymbol{W}_{11}=\boldsymbol{U}_{1} \boldsymbol{V}_{1} \\
& \begin{aligned}
\boldsymbol{W}_{12} \boldsymbol{W}_{22}^{\dagger} \boldsymbol{W}_{21} & =\boldsymbol{U}_{1} \underbrace{\frac{\boldsymbol{U}_{2}}{\text { rankerible }}}_{\boldsymbol{N}_{2}\left(\left(\boldsymbol{U}_{2} \boldsymbol{V}_{2}\right)\right)^{\dagger} \boldsymbol{U}_{2} \boldsymbol{W}_{1}} \\
& =\boldsymbol{U}_{1} \boldsymbol{V}_{1}
\end{aligned} \\
& =W_{11} \\
& \begin{aligned}
\boldsymbol{V}_{2}\left(\boldsymbol{U}_{2} \boldsymbol{V}_{2}\right)^{\dagger} \boldsymbol{U}_{2} & =\boldsymbol{V}_{2}\left(\boldsymbol{U}_{2} \boldsymbol{V}_{2}\right)^{-1} \boldsymbol{U}_{2} \\
& =\boldsymbol{V}_{2} \boldsymbol{V}_{2}^{-1} \boldsymbol{U}_{2}^{-1} \boldsymbol{U}_{2} \\
& =I_{r \times r}
\end{aligned}
\end{aligned}
$$

When $\operatorname{rank}\left(\boldsymbol{U}_{2}\right)=\operatorname{rank}\left(\boldsymbol{V}_{2}\right)<r$

rank 3

Mathematical intuition behind why $W_{11}=W_{12}\left[D_{2}^{\dagger}\left(W_{22}\right)\right]^{\dagger} W_{21}$

Simple scenario was noise free! $\boldsymbol{W}=\left[\begin{array}{ll}\boldsymbol{W}_{11} & \boldsymbol{W}_{12} \\ \boldsymbol{W}_{21} & \boldsymbol{W}_{22}\end{array}\right] \quad \operatorname{rank}(\boldsymbol{W})=r$ W singular values

Real world scenario is not

$$
\widetilde{\boldsymbol{W}}=\left[\begin{array}{ll}
\widetilde{\boldsymbol{W}}_{11} & \widetilde{\boldsymbol{W}}_{12} \\
\widetilde{\boldsymbol{W}}_{21} & \widetilde{\boldsymbol{W}}_{22}
\end{array}\right] \operatorname{rank}(\widetilde{\boldsymbol{W}})>r
$$

