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Key findings: PCP can serve as a useful and robust technique to identify exposure patterns that
are amenable to public health messaging and research.

Background

Why pattern recognition?
 ldentify sources of exposure

Pattern  |dentify behaviors that lead to exposure
Recognition « Can help drive targeted interventions, inform
policy, and shape public health regulations

Limitations of many existing pattern
T Diriansion . recognition techniques in environmental
Fiadi e Clustering health (EH) include:
« Results often uninterpretable
« Qutliers may affect solution
kmeans * Chemical concentrations may be
PCA below the limit of detection (LOD)

Hierar-
chical

Factor
Analysis

We have adapted PCP, a robust dimensionality reduction
algorithm in computer vision, to pattern recognition in EH.

PCP is a convex optimization program that decomposes a Original
data matrix into:

» Low-rank matrix (L) — consistent patterns of exposure

- Sparse matrix (S) — unique or outlying exposure events

Adaptations for environmental health:

)

1. Non-negativity constraint on L |

2. Can accommodate missingness -

" 3. Novel penalties for observations < LOD =

" 4. Non-convex approach that better models EH data =

Non-convex objective function:
ncV PCP := ringl lrank(L)Sr . )\HS”l e /.L”L + 5 — X”F T ]-LZO

NHANES data: 1000 U.S. adults x 21 persistent organic pollutants
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Applied ncvVPCP to NHANES:
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Chemical

NHANES: patterns identified from PCP L matrix
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PCP extracted 4 patterns
from NHANES data, each
with a distinct profile:

1. Lower weight PCBs

2. Higher weight PCBs

3. Furans

4. Dioxins
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Conclusions

NHANES: unique exposure events in the S matrix

Summary:
— . » |dentified exposure patterns not
influenced by outliers
— « Extreme events separated, not
discarded
- ~* Novel < LOD penalty
- _ .« Enhanced interpretability
-+ (Can handle missingness

Participants

PCP results can be used in

= health models to identify those
— sources or behaviors that are

harmful to human health.

References:
1. Zhang J, Yan J, Wright J. Square Root Principal Component Pursuit: Tuning-Free Noisy Robust Matrix Recovery. arXiv:2106.09211.

Acknowledgments:
NIEHS R01 ES028805, P30 ES009089, and F31 ES030263




