Principal component pursuit (PCP) for exposure pattern recognition

Lawrence Gardner Chillrud^{1*}, Elizabeth Atkeson Gibson¹, Yanelli Nunez¹, Robert Edward Colgan², Rachel Hannah Tao³, Junhui Zhang⁴, Jingkai Yan⁵, John Wright⁵, Jeff Goldsmith⁶, Marianthi-Anna Kioumourtzoglou¹

Departments of ¹Environmental Health Sciences, ²Computer Science, ³Epidemiology, ⁴Applied Physics and Applied Mathematics, ⁵Electrical Engineering, ⁶Biostatistics, Columbia University, New York, NY, USA

*Correspondence: lgc2139@cumc.columbia.edu

Key findings: PCP can serve as a useful and robust technique to identify exposure patterns that are amenable to public health messaging and research.

Methods

We have adapted PCP, a robust dimensionality reduction algorithm in computer vision, to pattern recognition in EH.

PCP is a convex optimization program that decomposes a data matrix into:

- Low-rank matrix $(\hat{L}) \rightarrow$ consistent patterns of exposure
- Sparse matrix $(\hat{S}) \rightarrow$ unique or outlying exposure events

Adaptations for environmental health:

1. Non-negativity constraint on \hat{L}

- 2. Can accommodate missingness
- 3. Novel penalties for observations < LOD

4. Non-convex approach that better models EH data

Non-convex objective function:

$$nc\sqrt{PCP} := \min_{L,S} \mathbf{1}_{rank(L) \le r} + \lambda ||S||_1 + \mu ||L + S - X||_F + \mathbf{1}_{L \ge 0}$$

Applied $nc\sqrt{PCP}$ to NHANES:

- 2001 2002
- 1,000 U.S. adults
- Mixture of 21 persistent organic pollutants (POPs)

Results

Conclusions

NHANES: unique exposure events in the \hat{S} matrix

Summary:

- Identified exposure patterns not influenced by outliers
- Extreme events separated, not discarded

- Novel < LOD penalty
- Enhanced interpretability
- Can handle missingness

PCP results can be used in health models to identify those sources or behaviors that are harmful to human health.

References:

1. Zhang J, Yan J, Wright J. Square Root Principal Component Pursuit: Tuning-Free Noisy Robust Matrix Recovery. arXiv:2106.09211.

Acknowledgments: NIEHS R01 ES028805, P30 ES009089, and F31 ES030263